Effects of a prior exhausting exercise on peak O₂ **uptake, lactate and ventilatory thresholds during ramp exercise in men** ESPOSITO F, VANNI R, ALFIERI P, CE' E, VEICSTEINAS A

Institute of Physical Exercise, Health and Sport, Univ. of Milan, Italy. fabio.esposito@unimi.it

Aim: Aim of this study was to evaluate the effects of prior exhausting exercise on maximum performance, lactate (LaT), first ($\dot{V}ET_1$) and second ($\dot{V}ET_2$) ventilatory thresholds during a ramp exercise.

Methods: Eight young males performed a maximum ramp (25 W·min⁻¹) cycloergometric test before and after an exhausting exercise (90% $\dot{V}O_2$ _{peak}). During tests, measurements of gas exchange (breath-by-breath), power and lactate concentration ([La⁻]) were obtained. Expressed as $\dot{V}O_2$ (L·min⁻¹), LaT, $\dot{V}ET_1$, $\dot{V}ET_2$ and the amplitude of the isocapnic buffering range of exercise ($\dot{V}ET_2 - \dot{V}ET_1$) were then calculated.

Results: After exhaustion: i) peak power and $\dot{V}O_{2 peak}$ decreased from 247±11 W to 234±12 W and from 2.77±0.15 L·min⁻¹ to 2.65±0.14 L·min⁻¹, respectively (P<0.05); ii) LaT occurred at higher $\dot{V}O_2$ (2.15±0.15 *vs.* 1.96±0.10 L·min⁻¹, P<0.05), whereas $\dot{V}ET_1$ was similar in both tests; iii) $\dot{V}ET_2$ appeared at lower $\dot{V}O_2$ (2.47±0.17 *vs.* 2.63±0.16 L·min⁻¹, P<0.05); iv) as a consequence, $\dot{V}ET_2$ - $\dot{V}ET_1$ decreased significantly by 21±4% (P<0.05).

Conclusions: Prior exhausting exercise affected metabolic and respiratory response of following exercise by reducing maximum performance, shifting LaT toward higher \dot{VO}_2 values, anticipating \dot{VET}_2 and reducing the buffered area of exercise. The similarity in \dot{VET}_1 before and after the exhausting exercise, together with LaT shift, may suggest that after exhaustion La⁻ production was similar but La⁻ appearance in plasma delayed. Assuming that \dot{VET}_1 is due to bicarbonate buffering of H⁺ in response to the systematic increase in blood La⁻, and that \dot{VET}_2 is associated with the ongoing metabolic acidosis, when bicarbonate is overwhelmed by the growing blood La⁻ accumulation, we conclude that prior exhausting exercise altered acidbase status and the activity of the enzymes involved in CO₂ transport and buffering systems.